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• Model 112 was used.

1 The Haldane Relationship
Using the “Parameter Scan” utility in Copasi (Figure 1), I collected steady state concentrations of ‘A’ and
‘B’ in 54 = 625 combinations of 𝑉𝑚𝑎𝑥(𝑓), 𝐾𝑚(𝑝), 𝑉𝑚𝑎𝑥(𝑟), and 𝐾𝑚(𝑠), where each parameter vary from 1×10−2

to 1 × 102 in a logarithmic scale.

Figure 1: ”Parameter Scan” setup
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Here I read the data, and add two columns, where keq represents the experimental 𝐾eq:

𝐾eq = [B]
[A]

and keq_calc represents the 𝐾eq calculated from the Haldane relationship:

𝐾eq =
𝑉𝑚𝑎𝑥(𝑓) ⋅ 𝐾𝑚(𝑝)
𝑉𝑚𝑎𝑥(𝑟) ⋅ 𝐾𝑚(𝑠)

q1 <- read_tsv('metabolic modelling/q1.txt', col_names = c('vf', 'kmp', 'vr', 'kms', 'A', 'B'))
q1 <- q1 %>% mutate(
keq = B/A,
keq_calc = (vf * kmp) / (vr * kms),
keq_diff = keq - keq_calc

)
q1

## # A tibble: 625 x 9
## vf kmp vr kms A B keq keq_calc
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.01 0.01 0.01 0.01 1 1.00e+0 1.00e+0 1
## 2 0.01 0.01 0.1 0.01 1.82 1.82e-1 1.00e-1 0.1
## 3 0.01 0.01 1 0.01 1.98 1.98e-2 1.00e-2 0.01
## 4 0.01 0.01 10 0.01 2.00 2.00e-3 1.00e-3 0.001
## 5 0.01 0.01 100 0.01 2.00 2.00e-4 1.00e-4 0.0001
## 6 0.1 0.01 0.01 0.01 0.182 1.82e+0 1.00e+1 10
## 7 0.1 0.01 0.1 0.01 1 1.00e+0 1.00e+0 1
## 8 0.1 0.01 1 0.01 1.82 1.82e-1 1.00e-1 0.1
## 9 0.1 0.01 10 0.01 1.98 1.98e-2 1.00e-2 0.01
## 10 0.1 0.01 100 0.01 2.00 2.00e-3 1.00e-3 0.001
## # ... with 615 more rows, and 1 more variable: keq_diff <dbl>

Plotting keq_calc against keq shows that 𝐾eq calculated in these two ways are equal, as the linear regression
line has a gradient of 1 and passes through the origin.
q1 %>% ggplot(aes(keq, keq_calc)) +
geom_point() +
geom_smooth()+
scale_x_log10()+
scale_y_log10()
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mod <- lm(q1$keq ~ q1$keq_calc)
summary(mod)

##
## Call:
## lm(formula = q1$keq ~ q1$keq_calc)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.148e-08 -4.480e-10 -4.480e-10 -4.190e-10 2.880e-07
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.078e-10 4.630e-10 1.529e+00 0.127
## q1$keq_calc 1.000e+00 1.135e-16 8.814e+15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.156e-08 on 623 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 7.769e+31 on 1 and 623 DF, p-value: < 2.2e-16

The Haldane relationship shows that 𝐾eq is proportional to 𝑉𝑚𝑎𝑥(𝑓) and 𝐾𝑚(𝑝), and inversely proportional
to 𝑉𝑚𝑎𝑥(𝑟) and 𝐾𝑚(𝑠), and this can be illustrated using a facetted heatmap:
q1 %>% ggplot(aes(x = vf, y = kmp, fill = log10(keq))) +
geom_tile()+
facet_grid((1/vr)~(1/kms), as.table = FALSE, labeller = label_both)+
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scale_x_log10(labels = plain, expand = c(0, 0))+
scale_y_log10(labels = plain, expand = c(0, 0))+
scale_fill_gradient2(low = 'blue', mid = 'yellow', high = 'red')+
labs(title = "Variation of Keq with vf, kmp, vr, and kms")+
theme(axis.text.x = element_text(angle = 90))
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Figure 2: Variation of 𝐾eq with 𝑉𝑚𝑎𝑥(𝑓), 𝐾𝑚(𝑝), 𝑉𝑚𝑎𝑥(𝑟), and 𝐾𝑚(𝑠)

The pattern in each grid shows that 𝐾eq is proportional to 𝑉𝑚𝑎𝑥(𝑓) and 𝐾𝑚(𝑝), and the pattern across the
grids shows that it is inversely proportional to 𝑉𝑚𝑎𝑥(𝑟) and 𝐾𝑚(𝑠).

2 Control Points in A Simple Linear Pathway
I use the “Parameter Scan” function to vary the 𝐾eq of reaction 3 (that catalyses the reversible conversion
between C and D) in the range 10−6 to 106 in a logarithmic scale (13 samples). The variables being recorded
are 𝐾eq and 𝐽 (flux control coefficient) of reaction 3, and the concentrations of C and D. Then, the reaction
quotient, 𝑄 (a.k.a. mass action ratio), of each row is calculated as:

𝑄 = [D]
[C]

q2_scan_r3 <- read_tsv('metabolic modelling/Q2.txt')
q2_scan_r3 <- q2_scan_r3 %>% mutate(q = d/c)
q2_scan_r3

## # A tibble: 13 x 5
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## j keq c d q
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.0000489 1.00e-6 100. 0.000100 0.00000100
## 2 0.0000489 1.00e-5 100 0.001 0.00001
## 3 0.00470 1.00e-4 99.1 0.00987 0.0000996
## 4 0.0353 1.00e-3 92.2 0.0885 0.000960
## 5 0.119 1.00e-2 69.0 0.556 0.00806
## 6 0.210 1.00e-1 44.5 2.35 0.0528
## 7 0.309 1.00e+0 32.0 6.77 0.212
## 8 0.369 1.00e+1 28.6 10.0 0.350
## 9 0.380 1.00e+2 28.2 10.6 0.378
## 10 0.381 1.00e+3 28.1 10.7 0.381
## 11 0.381 1.00e+4 28.1 10.7 0.381
## 12 0.381 1.00e+5 28.1 10.7 0.381
## 13 0.381 1.00e+6 28.1 10.7 0.381

Figure 3 shows the variation of the flux control coefficient, 𝐽 , of reaction 3, with its 𝐾eq. The plot shows
that a high 𝐾eq, i.e. high irreversibility, is correlated with a high 𝐽 , and in the intermediate range 𝐽 varies
linearly with ln(𝐾eq), i.e. varies linearly with Δ𝐺 = −𝑅𝑇 ln(𝐾eq)
q2_scan_r3 %>% ggplot(aes(log(keq), j)) +
geom_point()
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Figure 3: Variation of the flux control coefficient, 𝐽 , of reaction 3, with its 𝐾eq

Figure 4 shows the variation of the flux control coefficient, 𝐽 , of reaction 3 with 𝑄/𝐾eq, which is a measure
of displacement of the reaction from the equilibrium. A 𝑄/𝐾eq close to 1 indicates the reaction is close to
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equilibrium. The plot shows that when reaction is further displaced from the equilibrium, the its flux control
coefficient is higher.
q2_scan_r3 %>% ggplot(aes(q/keq, j)) +
geom_point()+
geom_smooth(method = 'lm', size = 0.5)
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Figure 4: Variation of the flux control coefficient, 𝐽 , of reaction 3, with 𝑄/𝐾eq

A linear regression analysis shows that there is a strong linear correlation between 𝐽 and 𝑄/𝐾eq, with
𝑝 = 4.02 × 10−6 < 10−5

mod <- with(q2_scan_r3, lm(j ~ q/keq))
summary(mod)

##
## Call:
## lm(formula = j ~ q/keq)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.054438 -0.019991 -0.012931 0.001452 0.108459
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.448e-02 2.221e-02 2.453 0.0341 *
## q 8.960e-01 9.010e-02 9.945 1.67e-06 ***
## q:keq -4.196e-08 1.569e-07 -0.267 0.7946
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05374 on 10 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9
## F-statistic: 55 on 2 and 10 DF, p-value: 4.02e-06

In order to vary 𝑄/𝐾eq without directly varying 𝐾eq, and to see the effect not only on reaction 3 but also
on all other reactions, I vary 𝑉𝑓 , not 𝐾eq, of reaction 3 from 10−6 to 106 with 1000 intervals, and collected
the flux control coefficients of all 6 reactions, the 𝐾eq of reaction 3, as well as concentrations of all species,
which are then used to calculate the mass action ratio of each reaction. Then, the displacement of each
reaction is calculated. When calculating displacement, the 𝐾eq of reaction 3 varies, and the 𝐾eq of other
reactions remain constant. The resulting dataframe contains three columns: 1) the reaction number; 2) the
flux control coefficient and 3) displacement from equilibrium of this reaction
q2_scan_r3_vf <- read_tsv('metabolic modelling/Q2-1.txt')
q2_scan_r3_vf <- q2_scan_r3_vf %>%
mutate(
d1 = (B/A) / 10,
d2 = (C/B) / 1,
d3 = (D/C) / keq,
d4 = (E/D) / 5,
d5 = (F/E) / 2,
d6 = (G/F) / 10,
c1 = A + B,
c2 = B + C,
c3 = C + D,
c4 = D + E,
c5 = E + F,
c6 = F + G,

) %>% select(!(1:7))
q2_scan_r3_vf_cleaned <- tibble(
reaction = integer(),
displacement = double(),
j = double()
)

for (i in 1:6) {
q2_scan_r3_vf_cleaned <- add_row(
q2_scan_r3_vf_cleaned,
reaction = i, j = q2_scan_r3_vf[[paste0('j', i)]], displacement = q2_scan_r3_vf[[paste0('d', i)]])

}
q2_scan_r3_vf_cleaned

## # A tibble: 6,006 x 3
## reaction displacement j
## <int> <dbl> <dbl>
## 1 1 1.00 0.0000000343
## 2 1 1.00 0.0000000353
## 3 1 1.00 0.0000000363
## 4 1 1.00 0.0000000373
## 5 1 1.00 0.0000000383
## 6 1 1.00 0.0000000394
## 7 1 1.00 0.0000000405
## 8 1 1.00 0.0000000416
## 9 1 1.00 0.0000000428
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## 10 1 1.00 0.0000000440
## # ... with 5,996 more rows
q2_scan_r3_vf_cleaned %>% ggplot(aes(1-displacement, j)) +
geom_point()+
facet_wrap(~reaction, scales = 'free', labeller = label_both)

reaction: 4 reaction: 5 reaction: 6

reaction: 1 reaction: 2 reaction: 3
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The plot shows that, when disturbing 𝑉𝑚𝑎𝑥(𝑓) of reaction 3, the disequilibrium ratio of all reactions are also
altered. Not only reaction 3 but also all other reactions follow the rule that, the flux control coefficent of
a reaction increases with the extent of displacement from the equilibrium. However, it is hard to predict
𝐽 given only the value of 𝑄/𝐾eq, as different reactions show different patterns of variations, so 𝑄/𝐾eq
(displacement from equilibrium) is not a robust indicator of 𝐽 .

3 Linear Pathway with Negative Feedback
I chose reaction 2 to be the one sensitive to the inhibitor, and varied 𝐾𝑖 from 10−18 to 1018 with 1000
intervals, and recorded it along with flux control coefficients of all reactions. The results are shown in Figure
5.
q3 <- read_tsv('metabolic modelling/Q3.txt')
q3 <- q3 %>% gather(reaction, "j", -ki)
q3 %>% ggplot(aes(ki, j)) +
geom_point()+
facet_wrap(~reaction, labeller = label_both)+
scale_x_log10()

The plots show that, the flux control coefficient (𝐽) of reaction 2 increases as the binding affinity (i.e. sensi-
tivity) to the inhibitor of the enzyme involved in this step increases (i.e. as 𝐾𝑖 decreases). 𝐽 of the upsteam
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reaction: 4 reaction: 5 reaction: 6
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1e−11 1e−02 1e+07 1e+16 1e−11 1e−02 1e+07 1e+16 1e−11 1e−02 1e+07 1e+16

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

ki

j

Figure 5: Effect of changing 𝐾𝑖 of reaction 2 on the flux control coefficient of all reactions. Lower 𝐾𝑖 means
higher binding affinity to the inhibitor.
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reaction 1 also inceases slightly. For all downstream reactions, 𝐽 decreases.

3.1 Re-analyse the effect of 𝐾𝑖 with constant flux
The flux and values of 𝐽 when 𝐾i = 10−18 and when 𝐾i = 1018 are shown below:
ki_low = 1e-18
flux_low = 0.476572
j_low = c(0.203839, 0.717872, 0.0342001, 0.0340061, 0.00278022, 0.007302)
ki_high = 1e18
flux_high = 1.07393
j_high = c(0.110937, 0.0822319, 0.278976, 0.319753, 0.0478304, 0.160271)

𝑉𝑓 of reaction 2 are optimised so that the flux when 𝐾i = 10−18 is 1.07393 (the same as when 𝐾i = 1018)

Optimization Result:

Objective Function Value: 1.07393
Function Evaluations: 248
CPU Time [s]: 0.061
Evaluations/Second [1/s]: 4065.57

(R2).Vf: 45.0229

Figure 6: Adjusting Vf

I adjusted the 𝑉𝑓 of reaction 2 from 5 to 45.0229 (6), verified that the flux is 1.07393 (the same as in the
state with negligible inhibition), and the values of 𝐽 are:
j_low <- c(0.144048, 0.0858949, 0.266261, 0.30518, 0.0456503, 0.152966)

which can be directly compared to the 𝐽 values in the uninhibited state:
tibble(
ki =c(rep("low (1e-18)", 6), rep("high (1e18)", 6)),
reaction = rep(as.character(1:6), 2),
j = c(j_low, j_high)

) %>% ggplot(aes(reaction, j, fill = ki)) +
geom_col(position = 'dodge')

10



0.0

0.1

0.2

0.3

1 2 3 4 5 6
reaction

j

ki

high (1e18)

low (1e−18)

The plot shows that, when the flux is made constant, a lower 𝐾𝑖 (higher affinity of inhibitor binding) increases
the flux control coefficent of reaction 2 and the upstream reaction 1, and decreases that of downstream
reactions, which is consistent with the previous experiment. However, the amount of change is not as much
as previously modelled.

3.1.1 Repeat with Model 212

I repeat the last analysis with model 212, this time choosing reaction 1 as the one to be affected by the
inhibitor.
ki_low = 1e-16
j_low = c(0.982287, 0.0109131, 0.00433655, 0.00237021, 6.9396e-05, 2.40539e-05)
flux_low = 0.091902
ki_high = 1e16
flux_high = 0.807846
j_high = c(0.437942, 0.31832, 0.104533, 0.12481, 0.0105218, 0.00387277)

Optimization Result:

Objective Function Value: 0.807846
Function Evaluations: 82
CPU Time [s]: 0.018
Evaluations/Second [1/s]: 4555.56

(R1).Vf: 25.7611

I adjusted the 𝑉𝑓 of reaction 1 from 5 to 25.7611 (6), verified that the flux is 0.807846 (the same as in the
state with negligible inhibition), and the values of 𝐽 are:
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j_low <- c(0.479732, 0.294652, 0.0967611, 0.11553, 0.00973947, 0.00358483)

comparing to the 𝐽 values in the uninhibited state:
tibble(
ki =c(rep("low (1e-16)", 6), rep("high (1e16)", 6)),
reaction = rep(as.character(1:6), 2),
j = c(j_low, j_high)

) %>% ggplot(aes(reaction, j, fill = ki)) +
geom_col(position = 'dodge')
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This time only reaction 1 has an increased 𝐽 , and all other downstream reactions have an lowered 𝐽 , which
is consistent with previous observations.
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